Math, asked by taiyabayasmin1234, 1 year ago

prove that,
1/(cosecA-cotA) -1/sinA=1/sinA-1/(cosecA+cotA)

Answers

Answered by faik79
0
LHS = 1/(cosecA - cotA) - 1/sinA

we know, cosec²A - cot²A = 1......(i)

= (cosec²A - cot²A)/(cosecA - cotA) - 1/sinA [from equation (i), ]

= (cosecA - cotA)(cosecA + cotA)/(cosecA - cotA) - 1/sinA

= (cosecA + cotA) - 1/sinA

= cosecA + cotA - cosecA [ as 1/sinA = cosecA]

= cotA

= cosecA - (cosecA - cotA)/1

= cosecA - (cosecA - cotA)/(cosec²A - cotA)

= 1/sinA - (cosecA - cotA)/(cosecA - cotA)(cosecA + cotA)

= 1/sinA - 1/(cosecA + cotA) = RHS

taiyabayasmin1234: This is not correct brother
faik79: The whole solution or some step ?
Answered by hafizur0210
1

Answer:

1/(cosecA-cotA)-1/sinA=1/sinA-1/(cosecA+cotA)

»1/(cosecA-cotA)+1/(cosecA+cotA)=1/sinA+1/sinA)

»1/(cosecA-cotA)(cosecA+ CotA)=1+1/sinA

»1(CosecA+cotA)+1(cosecA-cotA)/cosec²A-cot²A=2/sinA

»(cosecA+ CotA +cosecA-cotA)/1=2cosecA. [Sins,cosecA=1/sinA]

»2cosecA=2cosecA

Therefore,L. H.S.= R.H.S.

Similar questions