prove that,
1/(cosecA-cotA) -1/sinA=1/sinA-1/(cosecA+cotA)
Answers
Answered by
0
LHS = 1/(cosecA - cotA) - 1/sinA
we know, cosec²A - cot²A = 1......(i)
= (cosec²A - cot²A)/(cosecA - cotA) - 1/sinA [from equation (i), ]
= (cosecA - cotA)(cosecA + cotA)/(cosecA - cotA) - 1/sinA
= (cosecA + cotA) - 1/sinA
= cosecA + cotA - cosecA [ as 1/sinA = cosecA]
= cotA
= cosecA - (cosecA - cotA)/1
= cosecA - (cosecA - cotA)/(cosec²A - cotA)
= 1/sinA - (cosecA - cotA)/(cosecA - cotA)(cosecA + cotA)
= 1/sinA - 1/(cosecA + cotA) = RHS
we know, cosec²A - cot²A = 1......(i)
= (cosec²A - cot²A)/(cosecA - cotA) - 1/sinA [from equation (i), ]
= (cosecA - cotA)(cosecA + cotA)/(cosecA - cotA) - 1/sinA
= (cosecA + cotA) - 1/sinA
= cosecA + cotA - cosecA [ as 1/sinA = cosecA]
= cotA
= cosecA - (cosecA - cotA)/1
= cosecA - (cosecA - cotA)/(cosec²A - cotA)
= 1/sinA - (cosecA - cotA)/(cosecA - cotA)(cosecA + cotA)
= 1/sinA - 1/(cosecA + cotA) = RHS
taiyabayasmin1234:
This is not correct brother
Answered by
1
Answer:
1/(cosecA-cotA)-1/sinA=1/sinA-1/(cosecA+cotA)
»1/(cosecA-cotA)+1/(cosecA+cotA)=1/sinA+1/sinA)
»1/(cosecA-cotA)(cosecA+ CotA)=1+1/sinA
»1(CosecA+cotA)+1(cosecA-cotA)/cosec²A-cot²A=2/sinA
»(cosecA+ CotA +cosecA-cotA)/1=2cosecA. [Sins,cosecA=1/sinA]
»2cosecA=2cosecA
Therefore,L. H.S.= R.H.S.
Similar questions