Math, asked by KalyaniPramod, 9 months ago

PROVE THAT
1/cosecA-cotA = cosecA+cotA​

Answers

Answered by Anonymous
14

Correct Question :-

  \mapsto \tt \:  \frac{1}{cosecA + cotA}   = cosecA  - cotA

Solution :-

LHS :-

 \mapsto \tt \:  \frac{1}{cosecA + cotA}

 \mapsto \tt \:  \frac{1}{ \frac{1}{sinA}  +  \frac{cosA}{sinA} }

 \mapsto \tt \:  \frac{1}{ \frac{1 + cosA}{sinA} }

 \mapsto \tt \:  \frac{sinA}{(1 + cosA)}

 \mapsto \tt \:  \frac{sinA}{(1 + cosA)}  \times  \frac{(1 - cosA)}{(1 - cosA)}

 \mapsto \tt \frac{sinA(1 - cosA)}{1 {}^{2} - cos {}^{2} A }

 \mapsto \tt \:  \frac{ \cancel{sinA}(1 - cosA)}{sin {}^{ \cancel2} A}

 \mapsto \tt \:  \frac{1 - cosA}{sinA}

 \mapsto \tt \:  \frac{1}{sin}  -  \frac{cosA}{sinA}

 \mapsto \tt \: cosecA - cotA

RHS.

Hence,

{ \boxed{ \tt  \red {\frac{1}{cosecA + cotA}   = cosecA  - cotA}}}

Similar questions