Math, asked by mmamathatv, 11 months ago

Prove that 1 + costheta ÷ sintheta - sintheta ÷ 1 + costheta = 2cot
theta

Answers

Answered by jeetkrl7
7

Refer to the attached image

Attachments:
Answered by harendrachoubay
10

\dfrac{1+\cos \theta}{\sin \theta} -\dfrac{\sin \theta}{1+\cos \theta} =2\cot \theta, proved.

Step-by-step explanation:

To prove that, \dfrac{1+\cos \theta}{\sin \theta} -\dfrac{\sin \theta}{1+\cos \theta} =2\cot \theta.

L.H.S. = \dfrac{1+\cos \theta}{\sin \theta} -\dfrac{\sin \theta}{1+\cos \theta}

Taking LCM of denominator part, we get

=\dfrac{(1+\cos \theta)^2-\sin^2 \theta}{\sin \theta(1+\cos \theta)}

Using the algebraic identity,

(a+b)^{2} =a^{2} +2ab+b^2

=\dfrac{1+\cos^2 \theta+2\cos \theta-\sin^2 \theta}{\sin \theta(1+\cos \theta)}

Using the trigonometric identity,

\sin^2 A+\cos^2 A=1

\sin^2 A=1-\cos^2 A

=\dfrac{1+\cos^2 \theta+2\cos \theta-(1-\cos^2 \theta)}{\sin \theta(1+\cos \theta)}

=\dfrac{1+\cos^2 \theta+2\cos \theta-1+\cos^2 \theta}{\sin \theta(1+\cos \theta)}

=\dfrac{2\cos^2 \theta+2\cos \theta}{\sin \theta(1+\cos \theta)}

=\dfrac{2\cos \theta(\cos \theta+1)}{\sin \theta(1+\cos \theta)}

=\dfrac{2\cos \theta}{\sin \theta}

= 2\cot \theta

= R.H.S., proved.

Thus, \dfrac{1+\cos \theta}{\sin \theta} -\dfrac{\sin \theta}{1+\cos \theta} =2\cot \theta, proved.

Similar questions