Prove that : (1 + cot^2theta)(1-costheta)(1+costheta)=1
Answers
Answered by
2
Step-by-step explanation:
LHS
(1+cot²theta)(1-cos theta)(1+cos theta)
Now 1+cot²theta= cosec²theta
(cosec²theta)(1)²-(cos theta)² [using a²-b²=(a+b)(a-b)]
(cosec theta=1/sin theta
So cosec²theta=1/sin²theta)
Therefore,
(1/sin²theta)*1- cos²theta
(1/sin²theta)*sin²theta(since sin²theta+cos²theta=1)
sin²theta gets cancelled.
Therefore
LHS =1
LHS=RHS (Proved)
Hope this helps!!!
Similar questions