Math, asked by swathiammu135, 10 months ago

prove that (1+ cot a - cose a ) ( 1+ tan a + sec a)=2​

Answers

Answered by has42000
0

Answer:

Step-by-step explanation:

(1+cot A-cosec A).(1+tanA+secA)= 2

L.H.S.  =(1+cosA/sinA-1/sinA).(1+sinA/cosA+1/cosA)

=(sinA+cosA-1)×(cosA+sinA+1)/sinA.cosA

=[(sinA+cosA)² -(1)²] / sinA.cosA.

=(sin²A+cos²A+2.sinA.cosA - 1) / sinA.cosA.    ( sin²A+cos²A= 1 )

= ( 1 + 2.sinA.cosA -1) / sinA.cosA.

= 2.sinA.cosA / sinA.cosA

= 2

= R.H.S.

Answered by madhurilekkala124
1

Answer:

Step-by-step explanation:

(1+ cot a - cosec a ) ( 1+ tan a + sec a) = 2

(1+cos a/ sin a - 1/sin a ) (1+ sin a/cos a+1/cos a)

(sin a+cos a - 1 )/sin a* (cos a+sin a+1)/cos a

(sin a*cos a+sin² a+sin a+cos² a+cos a*sin a+cosa-cos a-sin a-1)/sina*cosa

(1-1+2 sin a cos a)/sin a*cos a

2 sin a*cos a/sina cos a

2

hence proved

Similar questions