Prove that:
(1 + cot A - cosec A) (1 + tan A + sec A) = 2
Answers
Answered by
784
[tex](1+ cot A - cosec A)(1+tanA+secA)=2 \\
L.H.S. \\
=(1+cotA-cosecA)(1+tanA+secA) \\
= (1 + \frac{cosA}{sinA} - \frac{1}{sinA} )(1+ \frac{sinA}{cosA} + \frac{1}{cosA} ) \\
= ( \frac{sinA+cosA-1}{sinA} )( \frac{cosA+sinA+1}{cosA} ) \\
= \frac{ (sinA+cosA)^{2}- 1^{2} }{sinA.cosA} \\
= \frac{ sin^{2}A + cos^{2}A + 2sinA.cosA-1 }{sinA.cosA} \\
= \frac{ 1 + 2sinA.cosA-1 }{sinA.cosA} \\
= \frac{2sinA.cosA }{sinA.cosA} = 2 = R.H.S.[/tex]
Hence, proved.
Hence, proved.
Answered by
171
(1+cot A-cosec A).(1+tanA+secA)= 2
L.H.S.
=(1+cosA/sinA-1/sinA).(1+sinA/cosA+1/cosA)
=(sinA+cosA-1)×(cosA+sinA+1)/sinA.cosA
=[(sinA+cosA)^2-(1)^2]/sinA.cosA.
=(sin^2A+cos^2A+2.sinA.cosA-1)/sinA.cosA.
=( 1+2.sinA.cosA -1)/sinA.cosA.
= 2.sinA.cosA/sinA.cosA
= 2 , proved.
Similar questions