Prove that: (1 + cot A - cosec A) (1 + tan A + sec A)=2
Answers
LHS = (1+ cot a – cosec a)(1 + tan a – sec a)
LHS = (1 + cos a/sin a – 1/sin a) (1 + sin a/cos a – 1/cos a)
LHS = (sin a +cos a – 1/sin a) (cos a + sin -1/cos a)
LHS = [(sin a+cos a) – (1)/sin a] [(cos a + sin a) – (1)/cos a]
LHS = (sin a + cos a)2 – (1)2)/sin a cos a
LHS = sin 2a + cos 2a + 2sin acos a -1/sin a cos a
Since sin 2a + cos 2a = 1
LHS = 1+ 2 sin a cos a – 1/sin acos a
LHS = 2 sin a cos a/sin a cos a
LHS = 2
LHS = RHS = 2
Hence , proved !
Just open the bracket and keep taking LCM ull get the ans
LHS = (1+ cot a – cosec a)(1 + tan a – sec a)
LHS = (1 + cos a/sin a – 1/sin a) (1 + sin a/cos a – 1/cos a)
LHS = (sin a +cos a – 1/sin a) (cos a + sin -1/cos a)
LHS = [(sin a+cos a) – (1)/sin a] [(cos a + sin a) – (1)/cos a]
LHS = (sin a + cos a)2 – (1)2)/sin a cos a
LHS = sin 2a + cos 2a + 2sin acos a -1/sin a cos a
Since sin 2a + cos 2a = 1
LHS = 1+ 2 sin a cos a – 1/sin acos a
LHS = 2 sin a cos a/sin a cos a
LHS = 2
LHS = RHS = 2
hope it helps
pls mark me as brainliest