Prove that ( 1+ cot A + tan A)( sin A- cos A) = sin A. tan A- cot A.cos A
Answers
Answered by
20
Answer:
Step-by-step explanation:
( 1+ cot A + tan A)( sin A- cos A)
= (sinA-cosA+ cotA(sinA-cosA)+ tanA(sinA - cosA)
= (sinA-cosA + cosA/sinA*sinA - cotA*cosA+ tanAsinA - sinA/cosA *cosA
= sinA - cosA + cosA - cotA*cosA + tanAsinA - sinA
= sinAtanA - cotA*cosA
= R.H.S
Answered by
7
Step-by-step explanation:
LHS = (1+tan A + cot A) (sin A - cosA)
1+ sin A cosA
+ cos A sin A
(sin A- cosA)
sin A cos + sin A+ cos²A
sin A cosA
sin A- cos A sin A =
sin A cosA cos A
(sin A - CoA)
cos A
sin A
sin A tan A- cosA cot.A = RHS Hence
Proved.
Similar questions
Social Sciences,
5 months ago
Math,
5 months ago
Computer Science,
10 months ago
Social Sciences,
1 year ago
Hindi,
1 year ago