Math, asked by alanjoseph4068, 10 months ago

Prove that ( 1+ cot A + tan A)( sin A- cos A) = sin A. tan A- cot A.cos A

Answers

Answered by spiderman2019
20

Answer:

Step-by-step explanation:

( 1+ cot A + tan A)( sin A- cos A)

= (sinA-cosA+ cotA(sinA-cosA)+ tanA(sinA - cosA)

= (sinA-cosA + cosA/sinA*sinA - cotA*cosA+ tanAsinA - sinA/cosA *cosA

= sinA - cosA + cosA - cotA*cosA + tanAsinA - sinA

= sinAtanA - cotA*cosA

= R.H.S

Answered by sekargowtham2018
7

Step-by-step explanation:

LHS = (1+tan A + cot A) (sin A - cosA)

1+ sin A cosA

+ cos A sin A

(sin A- cosA)

sin A cos + sin A+ cos²A

sin A cosA

sin A- cos A sin A =

sin A cosA cos A

(sin A - CoA)

cos A

sin A

sin A tan A- cosA cot.A = RHS Hence

Proved.

Similar questions