Math, asked by Anonymous, 10 months ago

PrOve tHat (1+ cot ∅ - cos ∅ ) ( 1+ tan∅ + sec∅ ) = 2​

Answers

Answered by Anonymous
9

\large{\underline{\bf{\purple{Correct\:Question:-}}}}

prove that:-

(1+ cot ∅ - cosec ∅) (1 + tan ∅ + sec∅) = 2.

━━━━━━━━━━━━━━━━━━━━━━━

\huge{\underline{\bf{\red{Solution:-}}}}

LHS :-

 \longmapsto  \rm\:\:(1 + cot \theta - cosec \theta)(1 + tan \theta + sec \theta) \\  \\\longmapsto  \rm\:(1 + \frac{cos \theta}{sin \theta}  -  \frac{1}{sin \theta})( 1 +  \frac{sin \theta}{cos \theta}   +  \frac{1}{cos \theta})  \\  \\  \longmapsto  \rm\: (\frac{sin \theta + cos \theta - 1}{sin \theta}) \\  \\  \longmapsto  \rm\: \frac{[(sin \theta + cos \theta) - 1].[(sin \theta + cos \theta) + 1 ]}{sin \theta \: cos \theta} \\  \\ \longmapsto  \rm\:\: \frac{(sin \theta + cos \theta) {}^{2}  - 1}{sin \theta \: cos \theta} \\  \\  \longmapsto  \rm\:\: \frac{ {sin}^{2}  \theta +  {cos}^{2}  \theta + 2sin \theta \: cos \theta - 1}{sin \theta \: cos \theta} \\  \\\longmapsto  \rm\:\: \frac{1 + 2sin \theta \: cos \theta - 1}{sin \theta \: cos \theta} \\  \\ \longmapsto  \bf{ \pink{sin {}^{2}  \theta +  {cos}^{2} \theta = 1 }} \\  \\\longmapsto  \rm\:\: \frac{2{ \cancel{sin \theta \: cos \theta}}}{{ \cancel{sin \theta \: cos \theta}  }} \\  \\ \longmapsto  \bf2 = RHS\:\: \\\\

LHS = RHS

Hence proved

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by BrainlyPopularman
6

Correct Question :

Prove that : (1+ cot ∅ - cosec ∅ ) ( 1+ tan∅ + sec∅ ) = 2

TO PROVE :

 \\ \:  \to  \:  \:  { \bold{   [ 1 +  cot(\phi) -  cosec( \phi)] [1 + tan( \phi) +  sec( \phi) ] = 2 }} \\

SOLUTION :

▪︎ Let's take L.H.S.

 \\ \:  \:  \:  \: \:  \:  \:  \: { \bold{  =[1 +  \cot(\phi) -  cosec( \phi)] [1 +  \tan( \phi) +  \sec( \phi)  ] }} \\

• We know that –

 \\ \:  \:  \:  \: \implies  \:  \:  \: {  \red{ \boxed{ \bold{   \cot(\phi)  =  \frac{ \cos( \phi) }{ \sin( \phi) }  ,  \tan( \phi)  =  \frac{ \sin( \phi) }{ \cos( \phi)}  \:  , \:  cosec( \phi) =  \frac{1}{ \sin( \phi) } \: \:  and \:  \:   \sec( \phi)   =  \frac{1}{ \cos( \phi) }  }}}} \\

• So that –

 \\ \:  \:  \:  \: \:  \:  \:  \: { \bold{  =  [1 +   \frac{ \cos( \phi) }{ \sin( \phi) }  -  \frac{1}{ \sin( \phi) } ] [1 +   \frac{ \sin( \phi) }{ \cos( \phi) }  +   \frac{1}{ \cos( \phi) }  ] }} \\

 \\ \:  \:  \:  \: \:  \:  \:  \: { \bold{  = [ \frac{ \sin( \phi)  +  \cos( \phi)  - 1 }{  \sin( \phi) } ] [ \frac{ \cos( \phi)  +  \sin( \phi) + 1 }{ \cos( \phi) } ] }} \\

• Now using property –

 \\ \:  \:  \:  \implies {  \red{ \boxed{\bold{(a + b)(a - b)  =   {a}^{2}  -  {b}^{2} }}}} \\

 \\ \:  \:  \:  \: \:  \:  \:  \: { \bold{  = [  \frac{[\sin( \phi)  +  \cos( \phi)]^{2}  - 1 }{  \sin( \phi) \cos( \phi)  } ]  }} \\

 \\ \:  \:  \:  \: \:  \:  \:  \: { \bold{  = [  \frac{ \sin^{2} ( \phi)  +  \cos^{2}  ( \phi)  + 2 \sin( \phi)  \cos( \phi)  - 1 }{  \sin( \phi) \cos( \phi)  } ]  }} \\

• Now we are using –

 \\ \:  \:  \:  \implies {  \red{ \boxed{\bold{ \ { \sin }^{2}( \phi)   +  { \cos}^{2}( \phi) = 1 }}}} \\

 \\ \:  \:  \:  \: \:  \:  \:  \: { \bold{  = [  \frac{  \cancel1 +  2 \sin( \phi)  \cos( \phi)  -  \cancel1 }{  \sin( \phi) \cos( \phi)  } ]  }} \\

 \\ \:  \:  \:  \: \:  \:  \:  \: { \bold{  = [  \frac{  2  \cancel {\sin( \phi)  \cos( \phi)  } }{   \cancel{\sin( \phi) \cos( \phi) } } ]  }} \\

 \\ \:  \:  \:  \: \:  \:  \:  \: { \bold{  = \:  \:  \:  2 }} \\

 \\ \:  \:  \:  \: \:  \:  \:  \: { \bold{  = \:  \:  \:  R.H.S. \:  \:  \:  \: (Hence \:  \: proved)}} \\


Anonymous: Thank you bro
Similar questions