Math, asked by mshraju1970, 10 months ago

Prove that (1 + cot
- cosec
) + (1 + tan 8 + sec 0 ) = 2.​

Answers

Answered by Anonymous
14

Correct Question:

Prove that ( 1 + cotA - cosecA ) + ( 1 + tanA + secA ) = 2

Solution:

L.H.S. = ( 1 + cotA - cosecA )( 1 + tanA + secA )

 = (1 +  \frac{cosA}{sinA} -  \frac{1}{sinA} )(1  +  \frac{sinA}{cosA}  +  \frac{1}{cosA} )

 = ( \frac{sinA + cosA - 1}{sinA} )( \frac{cosA + sinA + 1}{cosA} )

 = \frac{(sinA + cosA) {}^{2} - 1 {}^{2}  }{sinAcosA}

 =  \frac{sin {}^{2}A + cos {}^{2}A + 2sinAcosA - 1  }{sinAcosA }

 =  \frac{1 + 2sinAcosA - 1}{sinAcosA \: }

 =  \frac{2sinAcosA \: }{sinAcosA \: }

= 2 = R.H.S

\huge{\blue{\boxed{\boxed{\boxed{\pink{\underline{\underline{\mathfrak{\red{♡Hence\: Proved♡}}}}}}}}}}

Similar questions