Math, asked by sm8699219, 1 year ago

Prove that:
(1+cot-cosec)(1+tan+sec)=2


sm8699219: abhi hm hirnifall chlte h
sm8699219: fir punchghag chlnge
sm8699219: hirnifall 60km
sm8699219: bcha hua h
sm8699219: 30
sm8699219: 25

Answers

Answered by Monieeshan
2

(1+cotA−cosecA)(1+tanA+secA)=2

L.H.S.

=(1+cotA−cosecA)(1+tanA+secA)

=(1+ sinAcosA − sinA1 )

(1+ cosAsinA + cosA1 )

=( sinAsinA+cosA−1)

( cosAcosA+sinA+1 )

= sinA.cosA(sinA+cosA)2−12

= sinA.cosAsin 2 A+cos

2A+2sinA.cosA−1

=

sinA.cosA

1+2sinA.cosA−1

=

sinA.cosA

2sinA.cosA

=2

=R.H.S.


sm8699219: thank you
Monieeshan: Mark me as brainliest
Answered by jsprqtfnagycsqsfbs
1

Answer:

2

Step-by-step explanation:

(1+cot A-cosec A).(1+tanA+secA)= 2

L.H.S.

=(1+cosA/sinA-1/sinA).(1+sinA/cosA+1/cosA)

=(sinA+cosA-1)×(cosA+sinA+1)/sinA.cosA

=[(sinA+cosA)^2-(1)^2]/sinA.cosA.

=(sin^2A+cos^2A+2.sinA.cosA-1)/sinA.cosA.

=( 1+2.sinA.cosA -1)/sinA.cosA.

= 2.sinA.cosA/sinA.cosA

= 2 , proved.

Similar questions