Math, asked by amartyakunta16, 7 months ago

Prove that (1+cot teta)² +(1- cot teta)² = 2 cosec²teta​

Answers

Answered by TheMoonlìghtPhoenix
12

Step-by-step explanation:

Answer:-

(1 +  \sf{cot \:  \theta})^{2}  + (1  -   \sf{cot \:  \theta})^{2}

So, breaking the Brackets under:-

  \sf{(x + y)^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy}

  \sf{(x  -  y)^{2}  =  {x}^{2}  +  {y}^{2}   -  2xy}

Let's Do!

 \sf{ cot^{2}  \: \theta  + 1 + 2 \: cot \:  \theta} +  \sf{ cot^{2}  \: \theta  + 1  -  2 cot \:  \theta}

Extend this side \longrightarrow

 \sf{ cot^{2}  \: \theta  + 1 + \cancel{ 2 \: cot \:  \theta}} +  \sf{ cot^{2}  \: \theta  + 1  \cancel{ -  2 cot \:  \theta}}

  = \sf{ 2cot^{2}  \: \theta  +2 }

  = \sf{ 2(cot^{2}  \: \theta  + 1) }

Now,

  = \sf{ cot^{2}  \: \theta  + 1 = cosec ^{2}  \theta  }

So,

  = \sf{ 2 \: cosec^{2}  \: \theta }

So, LHS = RHS

Hence Proved!

Answered by IdyllicAurora
97

Answer :-

Concept :-

Here the concept of Trignometric Ratios has been used. According to this, the value of opposite pair of Trignometric identities depend on each other.

Now first we will simplify LHS and then we will go for RHS which will give final equal values as output.

Solution :-

• To Prove :-

(1 + cot θ)² + (1 - cot θ)² = 2 cosec² θ

________________________________

Identities to be used :-

(x + y)² = x² + y² + 2xy

(x - y)² = x² + y² - 2xy

________________________________

• Proof :-

Let us take LHS first,

1 + cot² θ + 2cotθ + 1 + cot² θ - 2cotθ

Cancelling the like terms we get,

2 + 2cot² θ

Taking two in common we get,

➠ 2(1 + cot² θ)

By identity we know that,

cosec² θ = 1 + cot² θ

By applying this, we get,

➠ 2 cosec² θ = LHS

Clearly, LHS = RHS = 2 cosec² θ

Hence, proved ..

_____________________

More to know :-

• Trignometric relations are given as ,

sin² θ + cos² θ = 1 [vicé - versa]

cosec² θ = 1 + cot² θ [vicé - versa]

sec² θ = 1 + tan² θ [vicé - versa]

• Trignometric relations are given as,

sin θ = Perpendicular / Hypotenuse

cos θ = Base / Hypotenuse

tan θ = Perpendicular / Base

cosec θ = 1 / (sin θ)

sec θ = 1 / (cos θ)

cot θ = 1 / (tan θ)


TheMoonlìghtPhoenix: Great!
Similar questions