Math, asked by ArunSeshadhri, 4 months ago

Prove that (1+cot theta–cosec theta) × (1+tan theta–sec theta)=2​

Answers

Answered by humera1166
2

Step-by-step explanation:

I hope it will help you

ok

Attachments:
Answered by Anonymous
3

 \\  \\ \underline{ \underline{  \sf   \red{solution : } }} \\  \\

 \\ \sf \: l.h.s = ( 1 + cot \theta - cosec \theta) \times (1 + tan \theta - sec \theta) \\  \\  \\   \bigstar\boxed{ \bf \:cot \theta =  \dfrac{cos \theta}{sin \theta}  } \:  \:  \: \:  \:  \:  \:  \:  \:   \:  \:  \:  \:   \bigstar\boxed{ \bf \:cosec \theta =  \dfrac{1}{sin \theta}  } \\  \\  \bigstar \boxed{ \bf \:tan \theta =  \dfrac{sin \theta}{cos \theta}  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigstar \boxed{ \bf \: sec \theta =  \dfrac{1}{cos \theta} } \\  \\  \\

Putting values we get...

\\ \\ \implies \sf (1 +  \dfrac{cos \theta}{sin \theta}  -  \dfrac{1}{sin \theta} )(1 +  \dfrac{sin \theta}{cos \theta}  -  \dfrac{1}{cos \theta} ) \\  \\  \\  \implies \sf ( \dfrac{sin \theta + cos \theta - 1}{sin \theta} )( \dfrac{cos \theta + sin \theta - 1}{cos \theta} ) \\  \\  \\  \bigstar \boxed{ \bf \:(x + y)(x - y) =  {x}^{2}  -  {y}^{2}  }  \\   \sf \: here...  \to \: x = sin \theta + cos \theta\\  \sf \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \to \: y = 1 \: \\   \\ \\

Putting values we get..

  \\ \\ \sf \implies  \dfrac{( {sin \theta + cos \theta)}^{2}  -  {1}^{2} }{sin \theta.cos \theta}  \\  \\  \\   \bigstar\boxed{ \bf \:(x +  {y)}^{2}  =  {x}^{2}   +  {y}^{2} + 2xy } \\  \sf \: here \:  \:  \:  \:  \:  \:  \to \: x = sin \theta  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:   \:  \:  \:  \to \: y = cos \theta \\  \\  \sf \: putting \: values \: we \: get... \\  \\  \\  \sf \implies  \dfrac{ {sin}^{2} \theta +  {cos}^{2} \theta + 2sin \theta.cos \theta - 1 }{sin \theta.cos \theta}  \\  \\  \\   \bigstar\boxed{ \bf \:  {sin}^{2} \theta  +  {cos}^{2} \theta = 1 } \\  \\  \\  \sf \implies  \dfrac{1 + 2sin \theta.cos \theta - 1}{sin \theta.cos \theta}  \\  \\  \\  \sf \implies  \dfrac{2  \: \cancel{sin \theta.cos \theta}}{ \cancel{sin \theta.cos \theta} } \\  \\  \\  \sf \implies 2 \:  \:  =  \:  \: r.h.s \:  \:  \:  \:  \:  \:  \:  \:  \: (proved) \\  \\

 \\

MORE IDENTITIES :-

 \\

  • 1 + tan²A = sec²A

  • 1 + cot²A = cosec²A
Similar questions