Prove that( 1+cot² θ )(1 – cos θ)(1 + cos θ) = 1.
Answers
Step-by-step explanation:
+ cot2∅)(1 - cos∅)(1 + cos∅) = 1
{use , (a + b)(a - b) = a² - b² }
(1 + cot2∅)( 1 - cos²∅) = 1
[ use, 1 - cos²x = sin²x]
(1 + cot2∅)(sin²∅) = 1
( 1 + tan2∅)(sin²∅) = tan2∅
use, formula,
tan2∅ = 2tan∅/(1 - tan²∅)
( 1 - tan²∅ +2tan∅)sin²∅/(1 - tan²∅) = 2tan∅/( 1 - tan²∅)
(1 -tan²∅+ 2tan∅)sin²∅ = 2tan∅
( 1 - tan²∅+2tan∅)/cosec²∅ = 2tan∅
( 1 - tan²∅ + 2tan∅)/(1 + cot²∅) = 2tan∅
( 1 - tan²∅ + 2tan∅)tan∅/(1 +tan²∅) = 2
tan∅ - tan³∅ +2tan²∅ = 2 + 2 tan²∅
tan³∅ - tan∅ +2 = 0
izvoru47 and 54 more users found this answer helpful
THANKS 31
3.4
(24 votes)
4
It seems you overlooked the question, cause its cot2theta and not cos2theta. Isn't it?
pankaj12je avatar
Abhi its cot^2 theta
abhi178 avatar
but he writes in such a way that anhbody confused
pankaj12je avatar
yah
Log in to add comment
Answer Expert Verified
4.6/5
40
pankaj12je
794 answers
86.8K people helped
Hey there !!!
-------------------------------------------------------------------------------------
(1+cot²θ)(1-cosθ)(1+cosθ)=1--------Equation 1
(1+cosθ)(1-cosθ) is of the form (a+b)(a-b)=a²-b²
(1+cosθ)(1-cosθ)=1-cos²θ
But 1-cos²θ=sin²θ
So equation 1 changes to
=(1 + cot²θ )(sin²θ)
=sin²θ+cot²θsin²θ
=sin²θ+(cos²θ*sin²θ/sin²θ)
=sin²θ+cos²θ
=1
LHS=RHS
_________________________________________________
Hope this helped you...................
Answer:
(1+cot^2theta)(1-cos theta)(1+cos theta)= 1
Step-by-step explanation:
- (1 +cot^2 theta)(1-cos theta)(1+cos theta)=
- cosec^2theta (1 - cos theta)(1+cos theta)=
- cosec^2 theta(1-cos^2 theta)=
- cosec^2 theta(sin^2 theta)=
- cosec^2 theta(1/cosec ^2theta)=
- 1