Math, asked by meshwapatel345, 10 months ago

Prove that 1+(cot2A/1+cosecA)=1/sinA

Answers

Answered by rsingh625
0

1+(cot²A/1+cosecA)

=1+[(cos²A/sin²A)/(1+1/sinA)]

=1+[(cos²A/sin²A)/{(sinA+1)/sinA}]

=1+[cos²A/sin²A×sinA/(sinA+1)]

=1+[cos²A/sinA(sinA+1)]

=[sinA(1+sinA)+cos²A]/sinA(sinA+1)

=(sinA+sin²A+cos²A)/sinA(sinA+1)

=(sinA+1)/sinA(sinA+1)

=1/sinA (Proved)

Similar questions