prove that: (1+CotA)(1-CosA)(1+Cot²A)=1
Answers
Answered by
5
Answer:
Prove that (1-cosA)(1+cosA)(1+cotA×cotA)=1 ... ( 1 + CotA × Cot ) => ( 1 - Cos²A ) ( 1 + Cot²A ) => Sin²A × Cosec²A => Sin²A × 1/ Sin²A => 1
Answered by
0
Answer:
◾( 1 - CosA ) ( 1 + CosA) ( 1 + CotA × CotA) = 1
Now , using the identity ( a - b ) (a + b ) = ( a² - b² )
=>> ( 1 - Cos²A ) ( 1 + Cot²A)
=>> Now,
========
◀1 - Cos² A = Sin²A as
◀1 + Cot²A = Cosec²A
〰▪Putting in Values ,
( Sin²A ) ( Cosec²A)
=>>> Now, Sin²A = 1/ Cosec²A
We have !!
--------------
( Sin²A ) × 1/ Sin²A
= 1 = RHS!!
Please mark me brainliest
Similar questions