Math, asked by rudrasoni2965rs69, 11 months ago

prove that (1+ cotA-cosecA) (1+ tanA + secA)=2​

Answers

Answered by IamIronMan0
1

Answer:

Easy way is convert them in sin and cos

(1 +  \frac{ \cos(x) }{ \sin(x) }  -  \frac{1}{ \sin(x) } )(1 +  \frac{ \sin(x) }{ \cos(x)  }{+  \frac{1}{ \cos(x) } } ) \\\\  =  \frac{1 +  \cos(x)  -  \sin(x) }{ \sin(x) }  \times  \frac{1 +  \sin(x) -  \cos(x)  }{ \cos(x) } \\ \\   = \frac{1 - ( \cos(x) -  \sin(x) ) {}^{2}  }{ \sin(x)  \cos(x) }  \\ \\ =  \frac{1 - ( \cos {}^{2} (x)  +  \sin {}^{2} (x) - 2 \sin(x) \cos(x)   }{ \sin(x)  \cos(x) } \\ \\  =  \frac{1 - 1 + 2 \sin(x) \cos(x)  }{ \sin(x)  \cos(x) }\\  \\  = 2

Similar questions