Math, asked by dhumaljuily3929, 10 months ago

Prove that (1+cota-coseca) (1+tana+seca) =2

Answers

Answered by Anonymous
3

Ello..

[1+cotA-CosecA]*[1+tanA+secA]

= 1 + tanA + secA + cotA + 1 + cosecA - (1/sinA) - (1/cosA) - secAcosecA

= 1 + tanA + secA + cotA + 1 + cosecA - cosecA - secA - secAcosecA

= 2 + tanA + cotA - secAcosecA

= 2 + [(sin^2A + cos^2A)/(sinAcosA)] - secAcosecA

= 2 + 1/(sinAcosA) - secAcosecA

= 2 + secAcosecA - secAcosecA

= 2

Hence, LHS = RHS.

Answered by Anonymous
1

 \sf  \huge \underline{ \fbox{ \: To \:  prove : \:  \: }}

\bigg (1+ \cot{(a)}- \cosec{(a)} \bigg)  \bigg(1+ \tan{(a)}+ \sec{(a)} \bigg)  = 2

 \sf  \huge \underline{ \fbox{ \: Proof : \:  \: }}

LHS

 \sf \hookrightarrow \bigg (1+ \cot{(a)}- \cosec{(a)} \bigg)  \bigg(1+ \tan{(a)}+ \sec{(a)} \bigg)   \\ \\  \sf \hookrightarrow \bigg(1 +  \frac{ \cos{(a)}}{ \sin{(a)}} -  \frac{1}{ \sin{(a)}}  \bigg ) \bigg( 1 +  \frac{ \sin{(a)}}{ \cos{(a)}} +  \frac{1}{ \cos{(a)}}   \bigg) \\  \\ \sf \hookrightarrow \bigg(  \frac{ \sin{(a)}  + \ cos{(a) }- 1}{ \sin{(a)}} \bigg ) \bigg( \frac{ \cos{(a)} +  \sin{(a) }+ 1}{ \cos{(a)}}  \bigg) \\  \\  \sf \hookrightarrow \frac{ { \bigg( \sin{(a)} +  \cos{(a)} \bigg)}^{2} -  {(1)}^{2}  }{ \sin{a } \times   \cos{a}}  \\  \\  \sf \hookrightarrow \frac{{ \sin}^{2}a +  { \cos}^{2} a + 2  \sin{(a)} \cos{(a) }- 1 }{ \sin{(a)}  \times  \cos{(a)}}  \\  \\  \sf \hookrightarrow \frac{1 + 2 \sin{(a)} \cos{(a)} - 1}{ \sin{(a)} \times  \cos{(a)}}  \\  \\  \sf \hookrightarrow \frac{2 \sin{(a)} \cos{(a)}}{ \sin{(a)} \cos{(a)}}  \\  \\  \sf \hookrightarrow 2

 \red \starLHS = RHS

Hence proved

Similar questions