Prove that (1+cota-coseca) (1+tana+seca) =2
Answers
Answered by
3
Ello..✌✌
[1+cotA-CosecA]*[1+tanA+secA]
= 1 + tanA + secA + cotA + 1 + cosecA - (1/sinA) - (1/cosA) - secAcosecA
= 1 + tanA + secA + cotA + 1 + cosecA - cosecA - secA - secAcosecA
= 2 + tanA + cotA - secAcosecA
= 2 + [(sin^2A + cos^2A)/(sinAcosA)] - secAcosecA
= 2 + 1/(sinAcosA) - secAcosecA
= 2 + secAcosecA - secAcosecA
= 2
Hence, LHS = RHS.
Answered by
1
LHS
LHS = RHS
Hence proved
Similar questions