Prove that ( 1 + CotA - CosecA) ( 1 + TanA + SecA) =2
Answers
Answered by
1
Answer:
Hello dude
Here is your answer
L.H.S = ( 1+ cota-coseca) ( 1+ tana -seca)
Step-by-step explanation:
= (1+cosa/sina-1/sina) (1+sina/cosa-1/cosa)
= (sina+cosa-1/sina) (cosa+sina-1/cosa)
= ((sina+cosa) - (1)/sina) ((cosa+sina) - (1)/cosa)
= ((sina+cosa)raise to power2 - (1)raise to power 2)/sinacosa
= sin2a+cos2a+2sinacosa-1/sinacosa
= 1+2sinacosa-1/sinacosa (because sin2a+cos2a=1)
= 2sinacosa/sinacosa
=2
=R.H.S
Hence Proved
Hope Helpful ✌️
Answered by
21
◇ [1+cotA-CosecA]*[1+tanA+secA]
= 1 + tanA + secA + cotA + 1 + cosecA - (1/sinA) - (1/cosA)
- secAcosecA
= 1 + tanA + secA + cotA + 1 + cosecA - cosecA - secA - secAcosecA
= 2 + tanA + cotA - secAcosecA
= 2 + [(sin^2A + cos^2A)/(sinAcosA)] - secAcosecA
= 2 + 1/(sinAcosA) - secAcosecA
= 2 + secAcosecA - secAcosecA
= 2
Similar questions