Math, asked by iknowsonia, 9 months ago

Prove that: (1+cotA-cosecA)(1+tanA+secA)=2​

Answers

Answered by shadowsabers03
4

Taking LHS,

\longrightarrow LHS=(1+\cot A-\csc A)(1+\tan A+\sec A)

We can take,

  • \cot A=\dfrac{\cos A}{\sin A}
  • \csc A=\dfrac{1}{\sin A}
  • \tan A=\dfrac{\sin A}{\cos A}
  • \sec A=\dfrac{1}{\cos A}

Then,

\longrightarrow LHS=\left(1+\dfrac{\cos A}{\sin A}-\dfrac{1}{\sin A}\right)\left(1+\dfrac{\sin A}{\cos A}+\dfrac{1}{\cos A}\right)

\longrightarrow LHS=\dfrac{(\sin A+\cos A-1)(\cos A+\sin A+1)}{\sin A\cos A}

\longrightarrow LHS=\dfrac{((\sin A+\cos A)-1)((\sin A+\cos A)+1)}{\sin A\cos A}

Since (a-b)(a+b)=a^2-b^2,

\longrightarrow LHS=\dfrac{(\sin A+\cos A)^2-1^2}{\sin A\cos A}

\longrightarrow LHS=\dfrac{\sin^2A+\cos^2A+2\sin A\cos A-1}{\sin A\cos A}

Since \sin^2A+\cos^2A=1,

\longrightarrow LHS=\dfrac{1+2\sin A\cos A-1}{\sin A\cos A}

\longrightarrow LHS=\dfrac{2\sin A\cos A}{\sin A\cos A}

\longrightarrow LHS=2

\longrightarrow LHS=RHS

Hence Proved!

Answered by tanejakca
0
See the photo attached for solution
Similar questions