Math, asked by anshultuwani, 9 months ago

Prove that ;
(1+cotA-cosecA)* (1+tanA+secA)=2​

Answers

Answered by TheProphet
5

S O L U T I O N :

Prove that;

(1+cot A - cosec A) × (1+tan A + sec A) = 2

\underline{\bf{Explanation\::}}

Firstly, as we know that formula & some changes;

  • cot Ф = cos Ф / sin Ф
  • cosec Ф = 1 / sin Ф
  • tan Ф = sin Ф / cos Ф
  • sec Ф = 1 / cos Ф

Now;

Taking L.H.S :

\mapsto\tt{(1+cot\:A - cosec\:A) (1+tan\:A+sec\:A) }

\mapsto\tt{\bigg(1+\dfrac{cos\:A}{sin\:A} - \dfrac{1}{sin\:A} \bigg) \bigg(1+\dfrac{sin\:A}{cos\:A} +\dfrac{1}{cos\:A}\bigg)}

\mapsto\tt{\dfrac{1}{sin\:A} \bigg(sin\:A+cos\:A - 1\bigg) \dfrac{1}{cos\:A} \bigg(cos\:A + sin\:A + 1\bigg)\:\:\underbrace{\sf{taking\:common\:as\:1/sin\:A \:\:\&\:\:1/cos\:A}}}\mapsto\tt{\dfrac{1}{sin\:Acos\:A} \bigg[(sin\:A+cos\:A)^{2} -(1)^{2}\bigg]}

\mapsto\tt{\dfrac{1}{sin\:Acos\:A} \bigg[(sin\:A)^{2} +(cos\:A)^{2} + 2\times sin\:A\times cos\:A-1\bigg]\:\:\underbrace{\sf{Using\:formula \:of\:(a+b)^{2}}}}\mapsto\tt{\dfrac{1}{sin\:Acos\:A} \bigg[\cancel{1} + 2sin\:A cos\:A-\cancel{1} \bigg]\:\:\underbrace{\sf{\therefore \:sin^2A + cos^2 A = 1}}}

\mapsto\tt{\dfrac{1}{sin\:Acos\:A} \bigg[ 2sin\:A cos\:A\bigg]}

\mapsto\tt{\dfrac{2\cancel{\:sin\:A cos\:A}}{\cancel{sin\:Acos\:A} }}

\mapsto\bf{2}

Thus;

The L.H.S = R.H.S .

It's proved .

Similar questions