Math, asked by kalashp22, 6 months ago

Prove that ( 1 + cotA- cosecA) ( 1 + tanA + secA) =2​

Answers

Answered by Anonymous
4

\huge{\underline{ \red{\frak{Solution : -  }}}} \\  \\

:\implies \sf  \bigg(1 + \cot(A)  -  \cosec(A)  \bigg) \bigg(1 + \tan(A)   +   \sec(A)  \bigg) = 2 \\  \\  \\

L.H.S :-

:\implies \sf \Bigg \lgroup1 +  \dfrac{\cos(A) }{\sin(A)}-   \dfrac{1}{\sin(A)} \Bigg \rgroup \Bigg \lgroup1 +  \dfrac{\sin(A) }{\cos(A)}-   \dfrac{1}{\cos(A)} \Bigg \rgroup \\  \\  \\

:\implies \sf \Bigg \lgroup \dfrac{\sin(A)  + \cos(A)  - 1}{\sin(A)}\Bigg \rgroup \Bigg \lgroup\dfrac{\cos(A) + \sin(A)  + 1}{\cos(A)}\Bigg \rgroup \\  \\  \\

:\implies \sf  \dfrac{ \bigg(\sin(A)  + \cos(A)\bigg)^{2}  - 1}{\sin(A).\cos(A)} \qquad \qquad \Bigg\lgroup \textsf{\textbf{$\because$ a$^ \text2$ - b$^ \text2$= (a + b) (a - b)}}\Bigg\rgroup \\  \\  \\

:\implies \sf  \dfrac{ \sin ^{2} (A)  + \cos^{2} (A)  - 1 + 2\sin(A)\cos(A)}{\sin(A).\cos(A)} \\  \\  \\

:\implies \sf  \dfrac{1 - 1 + 2\sin(A)\cos(A)}{\sin(A).\cos(A)}\qquad \qquad \Bigg\lgroup \textsf{\textbf{$\because$ $\sin$$^ \text2$ - $\cos$$^ \text2$ = 1}}\Bigg\rgroup \\  \\  \\

:\implies \sf  \dfrac{ 2\sin(A)\cos(A)}{\sin(A).\cos(A)} \\  \\  \\

:\implies \underline{ \boxed{ \sf  2= RHS }}\\  \\  \\

ஃ LHS = RHS

Hence Proved

_____________________

\boxed{\boxed{\begin{minipage}{6cm} \textsf{\textbf{ Important Trigonometric identities :-}} \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{minipage}}}

Similar questions