Math, asked by sunil15chandy, 5 months ago

Prove that ( 1+cotA-cosecA) (1+tanA+secA) =2​

Answers

Answered by sona11680
4

 LHS = ( 1 + cot A - cos \: ecA)

 = (1 +  \frac{cos A }{sin A }  -  \frac{1}{sin A } )(1 + \frac{sin A}{cos A } +  \frac{1}{cos A }  )

  =  (\frac{sin A + cos  \: A   - 1}{sin} )( \frac{cos A  + sin A + 1}{cos A} )

 =  \frac{(sin A +cos  {A }^{2}  }{sin A   \:  \:  cos A }

 =  \frac{1 + 2 \sin A \: cos A  - 1}{sin A  \: cos A }  \:  \:  \:  \:  \:  \:  \:  \:  \:  ( {sin}^{2} A +   {cos}^{2}  \: A = 1)

 = 2

Hence proved

 \huge \fcolorbox{purple}{violet}{sona11680}

Similar questions