Math, asked by lovek6Gshashikhur, 1 year ago

Prove that ( 1+ cota-coseca) ( 1+ tana -seca) =2

Answers

Answered by navpreetkaur411
353

Answer:

L.H.S = ( 1+ cota-coseca) ( 1+ tana -seca)

Step-by-step explanation:

= (1+cosa/sina-1/sina) (1+sina/cosa-1/cosa)

= (sina+cosa-1/sina) (cosa+sina-1/cosa)

= ((sina+cosa) - (1)/sina) ((cosa+sina) - (1)/cosa)

= ((sina+cosa)raise to power2 - (1)raise to power 2)/sinacosa

= sin2a+cos2a+2sinacosa-1/sinacosa

= 1+2sinacosa-1/sinacosa   (because sin2a+cos2a=1)

= 2sinacosa/sinacosa

=2

=R.H.S

Answered by modi7260
308
(1+cot A-cosec A).(1+tanA+secA)= 2

L.H.S.

=(1+cosA/sinA-1/sinA).(1+sinA/cosA+1/cosA)

=(sinA+cosA-1)×(cosA+sinA+1)/sinA.cosA)

=[(sinA+cosA)^2-(1)^2]/sinA.cosA.

=(sin^2A+cos^2A+2.sinA.cosA-1)/sinA.cosA.

=( 1+2.sinA.cosA -1)/sinA.cosA.

= 2.sinA.cosA/sinA.cosA

= 2 , proved.



PLEASE MARK ME AS BRAINLIEST.
Similar questions