Math, asked by AkshatModi, 7 months ago

Prove that

1+cotA+tanA(sinA-cosA) / sec3 A  - cosec3  A   =   sin2Acos2A       ​

Answers

Answered by SujalSirimilla
6

ANSWER:

\sf \displaystyle \frac{(1+cotA+tanA)(sinA-cosA)}{sec^3A-cosec^3A} =sin^2Acos^2A

Sec³A-cosec³A is in the form a³- b³=(a - b)(a² + b² + ab)

\to \sf \displaystyle \frac{(1+cotA+tanA)(sinA-cosecA)}{(secA-cosecA)(sec^2A+cosec^2A+secAcosecA)}

Write all in terms of sin and cos.

\to \sf \displaystyle \frac{(1+\dfrac{cosA}{sinA} +\dfrac{sinA}{cosA} )(sinA-cosA)}{(\dfrac{1}{cosA} -\dfrac{1}{sinA} )(sec^2A+cosec^2A+secAcosecA)}

Further simplifying, we get:

\to \sf \displaystyle \frac{(\dfrac{sinAcosA+cos^2A+sin^2A}{sinAcosA}  )(sinA-cosA)}{(\dfrac{sinA-cosA}{cosAsinA}  )(sec^2A+cosec^2A+secAcosecA)}

Divide the whole equation by sinAcosA on the num and denominator.

\to \sf \displaystyle \frac{\dfrac{(\dfrac{sinAcosA+cos^2A+sin^2A}{sinAcosA}  )(sinA-cosA)}{sinAcosA}}{\dfrac{(\dfrac{sinA-cosA}{cosAsinA}  )(sec^2A+cosec^2A+secAcosecA)}{sinAcosA}}

▣ Further simplifying, we get:

\sf \displaystyle \frac{(sin^2A+cos^2A+sinAcosA)}{(sec^2A+cosec^2A+secAcosecA)  }

\sf \displaystyle \frac{(1+sinAcosA)}{(\dfrac{1}{sin^2A} +\dfrac{1}{cos^2A} +secAcosecA)  }

\sf \displaystyle \frac{(1+sinAcosA)}{\dfrac{cos^2A+sin^2A}{cos^2Asin^2A} +secAcosecA)  }

\sf \displaystyle \frac{(1+sinAcosA)}{\dfrac{1}{cos^2Asin^2A} +secAcosecA  }

\sf \displaystyle \frac{(1+sinAcosA)}{\dfrac{1}{cos^2Asin^2A} +\dfrac{1}{sinAcosA}   }

\sf \displaystyle \frac{(1+sinAcosA)}{\dfrac{sinAcosA+cos^2Asin^2A}{cos^3Asin^3A}    }

\sf \displaystyle \frac{(1+sinAcosA)}{\dfrac{sinAcosA(1+cosAsinA)}{cos^3Asin^3A}    }

\sf \displaystyle \frac{1}{\dfrac{sinAcosA}{cos^3Asin^3A}    }

\sf \dfrac{sin^3Acos^3A}{sinAcosA}

\to \boxed{\sf{\green{sin^2Acos^2A}}}

∴LHS = RHS.

Hence proved.

Similar questions