Math, asked by shivamkumar46, 7 months ago

Prove that; (1+cotA+TanA).(SinA-CosA)=Sec3A-Cosec3A/Sec2A.Cosec2A.

Answers

Answered by giriganpathsutrave
0

Answer:

LHS

=

sec

3

A−cosec

3

A

(1+cotA+tanA)(sinA−cosA)

=

(secA−cosecA)(sec

2

A+cosec

2

A+secAcosecA)

(1+cotA+tanA)(sinA−cosA)

=

(sec

2

A+cosec2A+secAcosecA)

(1+cotA+tanA)(sinA−cosA)

=

(cosAsinA+cos

2

A+sin

2

A)

(1+cotA+tanA)(sin

3

Acos

3

A)

=

(sinAcosA+1)

(1+

sinA

cosA

+

cosA

sinA

)(sin

3

Acos

3

A)

=

(1+sinAcosA)

(1+sinAcosA)(sin

2

Acos

2

A)

=sin

2

Acos

2

A=RHS

Hence proved

Similar questions
Math, 11 months ago