Math, asked by nishantdhiman2843, 5 months ago

Prove that (1+cotQ-cosecQ)(1+tanQ+secQ)=2​

Answers

Answered by ILLUSTRIOUS27
2

Given

  •  \bf(1 + cot \theta - cosec \theta)(1 + tan \theta + sec \theta) = 2

To Prove

  • LHS=RHS

Proof

LHS

 \bf \: (1 + cot \theta - cosec \theta)(1 + tan \theta + sec \theta)  \\  \\  \implies \bf (1 +  \dfrac{cos \theta}{sin \theta} -  \dfrac{1}{sin \theta}  )(1 +  \dfrac{sin \theta}{cos \theta}  +  \dfrac{1}{cos \theta} ) \\  \\  \implies \: (  \bf\frac{sin \theta + cos \theta - 1}{sin \theta} )( \dfrac{cos \theta + sin \theta + 1}{cos \theta} ) \:  \:  \\  \\  \implies \bf \{ \frac{ {(sin \theta + cos \theta )}^{2}  - 1}{sin \theta cos \theta} \} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \implies \:   \bf\frac{ {sin}^{2} \theta +  {cos}^{2} \theta + 2sin \theta  cos \theta  }{sin \theta cos \theta}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \implies  \bf \frac{1 + 2sin \theta cos \theta}{sin \theta cos \theta}   \implies \frac{1}{sin \theta cos  \theta}  +  \frac{2sin \theta cos \theta}{sin \theta  cos \theta}  \\  \\  \implies \underline{ \boxed{ \huge \bf \: 2 = RHS}} \bf \: hence \: proved

Similar questions