Math, asked by Kabitanath5717, 9 months ago

Prove that 1+i÷1-i+1-i÷1+i=0

Answers

Answered by Anonymous
4

Step-by-step explanation:

 \frac{1 + i}{1 - i}  +  \frac{1 - i}{1 + i}  \\ \\   = \frac{ {(1 + i)}^{2} }{1 ^{2}  -  {i}^{2} }  +  \frac{ {(1  -  i)}^{2} }{ {1}^{2}   -  {i}^{2} }   \\ \\   =  \frac{1 +  {i}^{2} + 2i }{1  - (  - 1)}  +  \frac{1^{2}  + {i}^{2} - 2i  }{1 - ( - 1)}   \\ \\   = \frac{1 - 1 + 2i}{2}  +  \frac{1 - 1 - 2i}{2}  \\  \\   =  \frac{2i}{2}  +  \frac{ - 2i}{2}  \\  \\  = i - i \\  \\  = 0

Similar questions