Math, asked by vibhavjinturkar390, 1 month ago

prove that (1+i)⁴×(1+1/i)⁴=16​​

Attachments:

Answers

Answered by SanimaPanna00001
3

Question:-

Prove \:  that \: (1 + i {)}^{4}  \times  \bigg(1 +  \frac{1}{i}  \bigg)^{4}  = 16 \\  \\

Solution:-

(1 + i {)}^{4}  \times  \bigg(1 +  \frac{1}{i}  \bigg)^{4}  \\  \\

 = \left[(1 + i) \bigg(1 +  \frac{1}{i} \bigg) \right] ^{4}  \\  \\

 = \left[(1 + i) \frac{(1 + i)}{i} \right]^{4}  \\  \\

 = \left[ \frac{(1  + i)}{i} \right]^{4}  \\  \\

 =  \bigg( \frac{1 + 2i +  {i}^{2} }{ {i}^{4} }  \bigg)^{4}  \\  \\

 =  \frac{(1 + 2i - 1)^{4} }{1}  \\  \\

 =  \frac{(1 + 2i - 1)^{4} }{1}  \:  \: \:  \:  \red{ ....}\left[∵ {i}^{2}  =  - 1\right]\\  \\

 = 16  {i}^{4}  \\  \\

 = 16  \: \:   \:  \: \:  \:  \: .... [∵ {i}^{4}  = 1] \\  \\

LHS = RHS

Hence, proved

Answer:-

16.

Concept: Algebra of Complex Numbers

Similar questions