Prove that (1+I)^4into (1+1/i)^4=16
Answers
Answered by
5
Given
(1+i)⁴ × (1+1/i)⁴
To Prove
(1+i)⁴ × (1+1/i)⁴ = 16
By using Complex identity
1/i = -i
We can write as
(1 + i)⁴ × (1 - i)⁴
{(1 + i)²}² × {(1 - i)²}²
Using this identities
(a + b)² = a² + b² + 2ab
(a - b)² = a² + b² - 2ab
We get
{ (1)² + (i)² + 2i }² × { (1)² + (i)² - 2i }
{ 1 - 1 + 2i }² × { 1 - 1 - 2i }²
{ 0 + 2i }² x { - 2i }²
{2i}² × {-2i}²
(2)²(i)² × (-2)²(i)²
4 × - 1 × 4 × -1
-4×-4
16
Hence Proved
More Information
i² = -1
i³ = -i
i⁴ = 1
1/i = -1
Answered by
64
Question:-
- Prove that ( 1 + i )⁴ × (1 + 1 / i )⁴ = 16
Solution:-
Here ,
️ ➭ ( 1 + i )⁴ × (1 + 1 / i )⁴ = 16
Can also be written as : -
️ ➭ [ ( 1 + i )² ]² × [ ( 1 - i )² ]²
Now ,
️ ➭ ( 1² + i² + 2i )² × ( 1² + i² - 2i )²
️ ➭ ( 1 - 1 + 2i )² × ( 1 - 1 - 2i )²
️ ➭ ( 2 )² ( i )² × ( - 2 )² ( i )²
️ ➭ 4 × - 1 × 4 × - 1
️ ➭ 16
- Hence Proved
Similar questions
History,
2 months ago
Math,
2 months ago
Social Sciences,
4 months ago
Math,
11 months ago
Biology,
11 months ago