Prove that (- 1 + i)^7 = -8(1 + i)
Answers
Answer:
-1+I squre 7is equal 8 1+7is equal 8
By the given explanation, it is proven that (-1 + i)⁷ = -8(1 + i).
Given:
Prove that (-1 + i)² = -8(1 + i)
Solution:
The given statement is (-1 + i)⁷ = -8(1 + i)
Take LHS (-1 + i)⁷ it can be simplified as follows
=> (-1 + i)⁷ = (-1 + i)²(-1 + i)²(-1 + i)² (- 1 + i)
Using Algebraic identity (a + b)² = a² + b² + 2ab
=> (-1 + i)² = (-1)² + 2(-1)(i) + (i)²
= 1 - 2i - 1 = -2i
=> (-1 + i)² = -2i
=> (-1 + i)²(-1 + i)²(-1 + i)² (- 1 + i)
= (-2i) (-2i) (-2i) (-1 + i)
= - 8 (i)³(-1 + i)
= - 8(-1)(i) (-1 + i)
= 8 (- i + (i)²)
= 8 (- i - 1)
= - 8 (1 + i)
Hence, (-1 + i)⁷ = -8(1 + i)
Therefore,
By the given explanation, it is proven that (-1 + i)⁷ = -8(1 + i).
Learn more at
https://brainly.in/question/11366827
#SPJ3