Math, asked by TanishV0618, 1 month ago

prove that (1/log 3²) + (2/log9⁴) + (3/log27⁸)=0​

Attachments:

Answers

Answered by senboni123456
11

Step-by-step explanation:

We have,

 \rm \frac{1}{ log_{3}(2) } +  \frac{2}{ log_{9}(4) }   +  \frac{3}{ log_{27}(8) }  \\

  = \rm  log_{2}(3)  +  2log_{4}(9)   +  3log_{8}(27)   \\

We know, \rm\:log_{a}(b)=\frac{ln(b)}{ln(a)}\\

So,

  = \rm  log_{2}(3)  +  2 \frac{ ln(9) }{ ln(4) }   +  3 \frac{ ln(27) }{ ln(8) } \\

  = \rm  log_{2}(3)  +  2 \frac{ ln {(3)}^{2}  }{ ln(2)^{2}  }   +  3 \frac{ ln(3)^{3}  }{ ln(2) ^{3}  } \\

  = \rm  log_{2}(3)  +  2 \frac{2 ln {(3)} }{ 2ln(2)  }   +  3 \frac{ 3ln(3) }{ 3ln(2)  } \\

  = \rm  log_{2}(3)  +  2 \frac{ ln {(3)} }{ ln(2)  }   +  3 \frac{ ln(3) }{ ln(2)  } \\

  = \rm  log_{2}(3)  +  2  log_{2}(3)  +  3  log_{2}(3) \\

  = \rm  6log_{2}(3)  \\

Similar questions