prove that 1 minus sin theta by 1 + sin theta is equal to secant theta minus tan theta whole square
Answers
Answered by
6
Answer:
1-sinA/1+sinA
Rationalising the denominator
(1-sinA) (1-SinA) /1+sinA(1-SinA)
(1-SinA)²/ 1² -(Sin²A)
(1-SinA)²/ 1 -(Sin²A)
(1-SinA)² /Cos² A
[ 1 -Sin²A = cos²A]
(1-SinA/CosA)²
(1/CosA-SinA/CosA)²
(SecA-tanA)²
L.H S = R H.S
Similar questions