prove that 1 minus sin theta + cos theta whole square is equal to 2 into 1 + cos theta into 1 minus sin theta
Answers
Answered by
128
Answer:
To prove:
Consider,
LHS
Hence Proved
Answered by
22
Answer:
To prove: (1-sin\,\theta+cos\,\theta)^2=2(1+cos\,\theta)(1-sin\,\theta)
Consider,
LHS
=(1-sin\,\theta+cos\,\theta)^2
=(1-sin\,\theta)^2+cos^2\,\theta+2cos\.\theta(1-sin\,\theta)
=1^2+sin^2\,\theta-2sin\,\theta+cos^2\,\theta+2cos\,\theta-2cos\,\theta\:sin\,\theta
=1+1-2sin\,\theta+2cos\,\theta-2cos\,\theta\:sin\,\theta
=2(1-sin\,\theta+cos\,\theta-cos\,\theta\:sin\,\theta)
=2((1-sin\,\theta)+cos\,\theta(1-sin\,\theta))
=2(1-sin\,\theta)(1+cos\,\theta)
=RHS
Similar questions