Math, asked by Charvi20060201, 9 months ago

Prove that 1 / sec a - 1 +
1/ sec a + 1 = 2 cosec a cot a

Answers

Answered by Anonymous
5

\sf\huge\red{\underbrace{ Question : }}

Prove that :

\sf \cfrac{1}{\sec\:a - 1} + \cfrac{1}{\sec\:a+1}=2\csc\:a\cot\:a

\sf\huge\orange{\underbrace{ Solution : }}

LHS :

\sf \implies \cfrac{1}{\sec\:a - 1} + \cfrac {1}{\sec\:a  +  1}

\sf \implies \cfrac{(\sec\:a+ 1)+(\sec\:a - 1)}{(\sec\:a-1)(\sec\:a+1)}

\sf \implies \cfrac{\sec\:a+ 1+\sec\:a - 1}{(\sec\:a)^{2} - (1)^{2}}

  • (a + b)(a - b) = a² - b²

\sf \implies \cfrac{2\sec\:a}{\sec^{2}\:a - 1}

  • sec² θ - 1= tan² θ

\sf \implies \cfrac{2\sec\:a}{\tan^{2}\:a}

\sf \implies  \cfrac{2 \times \frac{1}{\cos\:a}}{\frac{\sin^{2} \: a}{\cos^{2}\:a}}

\sf \implies \cfrac{2}{\cancel{\cos\:a}} \times \cfrac{\cancel{\cos^{2}\:a}}{\sin^{2}\:a}

\sf \implies \cfrac{2\cos\:a}{\sin^{2}\:a}

  • sin² θ = sin θ.sin θ

\sf \implies \cfrac{2 \cos\:a}{\sin\:a\times \sin\:a}

\sf \implies 2 \times \cfrac{1}{\sin\:a} \times \cfrac{\cos\:a}{\sin\:a}

  • 1/sin θ = csc θ
  • cos θ/sin θ = cot θ

\sf \implies 2\csc\:a\cot\:a  \:  \: \tt\green{=RHS}

\blue{\bigstar}\underline{\boxed{\rm{\purple{\therefore Hence,\:it\:was\:proved.}}}}\:\blue{\bigstar}

Similar questions
Math, 1 year ago