Math, asked by suma6940, 10 months ago

prove that:
1+sec a/sec a=sin^2a/1+cos a​

Answers

Answered by adititrivedi7837
3

Answer:

here is your answer hope u understand

Attachments:
Answered by sourya1794
9

correct Question :-

\tt\:\dfrac{1+secA}{secA}=\dfrac{{sin}^{2}A}{1-cosA}

[Hint: simplify LHS and RHS separately]

{\bold{\pink{\underline{\red{So}\purple{lut}\green{ion}\orange{:-}}}}}

\tt\:LHS=\dfrac{1+secA}{secA}

\tt\longrightarrow\:\dfrac{1}{secA}+\cancel\dfrac{secA}{secA}

\tt\longrightarrow\:cosA+1

\tt\longrightarrow\:1+cosA

\tt\:RHS=\dfrac{{sin}^{2}A}{1-cosA}

\tt\longrightarrow\:\dfrac{1-{cos}^{2}A}{1-cosA}

\tt\longrightarrow\:\dfrac{{(1)}^{2}-{(cosA)}^{2}}{(1-cosA)}

\tt\longrightarrow\:\dfrac{\cancel{(1-cosA)}(1+cosA)}{\cancel{(1-cosA)}}

\tt\longrightarrow\:1+cosA

\tt\:LHS=RHS

Some Trigonometry formula :-

  • sinθ . cosecθ = 1

  • cosθ . secθ = 1

  • tanθ . cotθ = 1

  • sin²θ + cos²θ = 1

  • sec²θ - tan²θ = 1

  • cosec² - cot² = 1
Similar questions