Math, asked by rani2123, 1 year ago

prove that 1 +sec a-tan a/ 1+sec a + tana= 1+ sin a / cos a

Answers

Answered by ananyadavpkt
4

Here is ur solution

Hope it helps!!!

Attachments:
Answered by ChitranjanMahajan
0

The given trigonometric equation is proved using the trigonometric and algebraic identities.

( The RHS must have '-' instead of '+' )

We need to prove the trigonometric equation i.e. show LHS = RHS :

        \frac{1+secA- tanA}{1+secA+ tanA} = \frac{1-sinA}{cosA}

We begin solving the LHS and by simplifying bring it equal to LHS to prove the given equation.

Step 1 : Using the Square Trigonometric Identity

We use the trigonometric identity between the squares of the sec and tan ratios. The identity is :

                     sec^{2}x = 1 + tan^{2}x

So, we replace the 1 in the numerator with : sec^{2}x  - tan^{2}x

             = \frac{1+secA- tanA}{1+secA+ tanA}\\

             = \frac{sec^{2}A -tan^{2}A +secA- tanA}{1+secA+ tanA}

Step 2 : Splitting the algebraic square identity

We use the algebraic identity : a^{2} -b^{2} =(a+b)(a-b)

             = \frac{(secA -tanA)(secA+tanA) +secA- tanA}{1+secA+ tanA}

             = \frac{(secA -tanA)(secA+tanA) +(secA- tanA)}{1+secA+ tanA}

             = \frac{(secA -tanA)(secA+tanA+1)}{1+secA+ tanA}

             =(secA -tanA)

Step 3 : Converting the trigonometric rations sec and tan to base ratios i.e. cos and sin :

                           secA = 1/cosA\\tanA = sinA/ cosA

Thus, replacing the ratios, we get :

           = (1/cosA) - (sinA/cosA)\\

           =(1-sinA)/cosA

           = RHS

Hence, the given trigonometric equation is proved.

To learn more about Trigonometric Equations, visit

https://brainly.in/question/225630

#SPJ6

Similar questions