Math, asked by Anonymous, 9 months ago

Prove that 1 + secθ - tanθ / 1 + secθ + tanθ = 1 - sinθ / cosθ​

Answers

Answered by Anonymous
30

 \huge {\boxed {\mathrm {\purple{answer}}}}

WE HAVE TO PROVE:-

 \frac{1 +  \sin \theta -  \tan \theta}{1 +  \sin \theta  +  \tan \theta}  =  \frac{1 -  \sin \theta}{ \cos \theta}

so, L.H.S

 =  >  \frac{1 +  \sin \theta -  \tan \theta}{1 +  \sin \theta  +  \tan \theta}

 =  >  \frac{ {( \sec}^{2} \theta -   { \tan }^{2}   \theta) +  \sec \theta -  \tan \theta   }{1 +  \sec \theta +  \tan \theta  }  \:  \:  \:  \: [ \therefore { \sec }^{2} \theta -  { \tan}^{2}  \theta = 1  ]

 =  >  \frac{ ( \sec\theta  +    { \tan }   \theta)( \sec \theta -  \tan \theta) +  \sec \theta -  \tan \theta   }{1 +  \sec A +  \tan A  }

 =  >  \frac{ ( \sec\theta   -     { \tan }   \theta) [  (  \sec \theta  +   \tan \theta) + 1   ]   }{1 +  \sec  \theta  +  \tan  \theta   }

 =  >  \frac{ ( \sec\theta   -     { \tan }   \theta) \cancel{  ( 1 +  \sec \theta  +   \tan \theta)    }}  { \cancel{1 +  \sec  \theta  +  \tan  \theta   }}

 =  >  \sec \theta -  \tan \theta

 =  \frac{1}{ \cos \theta }  -  \frac{ \sin \theta}{ \cos \theta }

 =  \frac{1 -  \sin \theta  }{ \cos \theta }

Hence,

L.H.S=R.H.S

Answered by pulakmath007
16

\huge\boxed{\underline{\underline{\green{Solution}}}} </p><p>

 \displaystyle \:  \frac{1 + secθ - tanθ \: }{ 1 + secθ + tanθ}

 \displaystyle \:  =\frac{ (sec  \theta  - tan \theta  + 1 \: )}{(  sec \theta +tan \theta +  1\: )}

=  \displaystyle \: \frac{ (sec \theta  -  tan \theta  +  sec²\theta-  tan²\theta}{ (  sec \theta +tan \theta +  1\: )}

= \displaystyle \: \frac{[(sec \theta  -  tan \theta) + (sec \theta+tan \theta) (sec \theta - tan \theta)}{ ( sec \theta +tan \theta + 1\: )}

=  \displaystyle \: \frac{(sec\theta  -  tan \theta)(  sec \theta +tan \theta +  1\: ) }{( sec \theta +tan \theta +  1\: )}

  \displaystyle \:= (sec \theta   -  tan \theta \: )

  \displaystyle \: =  \frac{( 1  -  sin \theta ) }{cos \theta}

Similar questions