prove that (1÷sec thita-tan theta)-(1÷cos theta)=(1÷cos theta)-(1÷sec theta+tan theta)
Answers
Answer:
Step-by-step explanation:
Taking LHS,
\frac{1}{\sec \theta-\tan \theta}-\frac{1}{\cos \theta}=\frac{1}{\cos \theta}-\frac{1}{\sec \theta+\tan \theta}
substituting\sec ^{2} \theta-\tan ^{2} \theta=1,
\frac{1}{\sec \theta-\tan \theta}-\frac{1}{\cos \theta}
\frac{\sec ^{2} \theta-\tan ^{2} \theta}{\sec \theta-\tan \theta}-\frac{1}{\cos \theta}
\frac{(\sec \theta-\tan \theta)(\sec \theta+\tan \theta)}{\sec \theta-\tan \theta}-\frac{1}{\cos \theta}
\sec \theta+\tan \theta-\frac{1}{\cos \theta}
\frac{(\sec \theta+\tan \theta) \cos \theta-1}{\cos \theta}
\frac{\sec \theta \cos \theta+\tan \theta \cos \theta-1}{\cos \theta}
\frac{1-1+\frac{\sin \theta}{\cos \theta}}{\cos \theta}
\frac{\sin \theta}{\cos \theta}=\tan \theta=L H S
taking RHS,
\frac{1}{\cos \theta}-\frac{1}{\sec \theta+\tan \theta}
substituting \sec ^{2} \theta-\tan ^{2} \theta=1,
\frac{1}{\cos \theta}-\frac{\sec ^{2} \theta-\tan ^{2} \theta}{\sec \theta+\tan \theta}
\frac{1}{\cos \theta}-\frac{(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)}{\sec \theta+\tan \theta}
\frac{1}{\cos \theta}-(\sec \theta-\tan \theta)
\frac{1}{\cos \theta}-\sec \theta+\tan \theta
\frac{1-\cos \theta \sec \theta+\tan \theta \cos \theta}{\cos \theta}
\frac{1-\cos \theta \frac{1}{\cos \theta}+\tan \theta \cos \theta}{\cos \theta}
1-1+\tan \theta=\tan \theta=R H S
L H S=R H S
Hence Proved.
Step-by-step explanation:
plzzzzzzzzzzzzzzz mark me as brainlist