Prove that : 1/. Sec x- tan X - 1/cos X = 1/ cos X - 1/ sec X+ tan x
Answers
Answer:
TO PROVE : 1/( sec x - tan x ) - 1/cos x = 1/cos x - 1/( sec x + tan x )
LHS :
1/( sec x - tan x ) - 1/cos x
= sec x + tan x -sec x
= sec x - ( sec x-tan x )
= 1/cos x - (sec^2 x-tan^2 x) / ( sec x + tan x )
=1/cos x - 1/( sec x + tan x )
= RHS
Hope this helps!
Qᴜᴇsᴛɪᴏɴ :-
Prove that : 1/. Sec x- tan X - 1/cos X = 1/ cos X - 1/ sec X+ tan x
Sᴏʟᴜᴛɪᴏɴ :-
Taking LHS ,
→ 1/(Secx- tanx) - (1/cosx)
Multiplying by (secx + tanx) in the numerator and denominator of First Term and using (1/cosA) = secA in second Term we get,
→ [(secx + tanx)/{(secx +tanx)(secx - tanx)}] - secx
Now using (a + b)(a - b) in Denominator we get,
→ [(secx + tanx)/(sec²x - tan²x)] - secx
Now putting sec²A - tan²A = 1 in Denominator,
→ secx + tanx - secx
→ tanx
Now, Adding and subtracting secx , we get
→ secx + tanx - secx
→ secx + (tanx - secx)
Taking (-1) common & using (1/cosA) = secA
→ (1/cosx) - (secx - tanx)
Now Multiply and Divide second Term by (secx + tanx), we get ,
→ (1/cosx) - [{(secx - tanx)(secx + tanx)} / (secx + tanx)]
→ (1/cosx) - (sec²x - tan²x)/(secx + tanx)
Putting Second term of Numerator = 1 by sec²A - tan²A = 1 Now,
→ (1/ cosx) - 1/(secx + tanx) = RHS (Hence, Proved.)