prove that 1/sec x-tan x -1/cos x =1/cos x - 1/sec x +tan x
Answers
Answered by
0
Step-by-step explanation:
We have secx+tanx=k...........1
From 2nd identity
sec
2
x−tan
2
x=1
a
2
−b
2
=(a+b)(a−b)
(secx+tanx)(secx−tanx)=1
(k)(secx−tanx)=1 from eq 1
secx−tanx=
k
1
............2
adding equations 1 and 2, then we get
secx+tanx+secx−tanx=1+
k
1
secx+secx=1+
k
1
2secx=k
2
+
k
1
secx=k
2
+
2k
1
we know that secx=
cosx
1
cosx=
k
1
2
+
2k
1
cosx=
k
2
+1
2k
we know that from 1st identity
sinx=
(1−cosx
2
)
sinx=
(1−(
(k
2
+1)
2
2k
)
sinx=
(k
2
+1)
2
(1−4k
2
)
sinx=
k
2
+1
(k
2
+1)
2
−4k
2
sinx=
(k
2
+1)
2
(k
2
−1)
2
sinx=
k
2
+1
k
2
−1
Hence proved
Answered by
2
Answer:
The given statement is proved
Attachments:
Similar questions