Math, asked by AswinRaj1, 11 months ago

Prove that :
1/( sec x - tan x) - 1/cos x = 1/ cos x - 1/( sec x + tan x).

Give give detailed steps. It's a request.​

Answers

Answered by ihrishi
1

Step-by-step explanation:

Given:\\\frac{1}{sec \: x - tan \: x}  -  \frac{1}{cos \: x}   \\ = \frac{1}{cos \: x}   -  \frac{1}{sec \: x  +  tan \: x} \\   \\ \therefore \:  \frac{1}{sec \: x - tan \: x}   +  \frac{1}{sec \: x  +  tan \: x}    \\ \\  = \frac{1}{cos \: x}  + \frac{1}{cos \: x}  = \frac{2}{cos \: x}  = 2 \: sec \: x \\  \\ LHS \\= \frac{1}{sec \: x - tan \: x}   +  \frac{1}{sec \: x  +  tan \: x}   \\  \\  =  \frac{sec \: x  +  tan \: x + sec \: x   -   tan \: x}{sec ^{2}  \: x  -  tan^{2}  \: x}  \\   \\ =  \frac{2 \: sec \: x  }{1 }.. (\because sec ^{2}  \: x  -  tan^{2}  \: x=1) \\   \\ = 2 \: sec \: x  \\  \\  = RHS \\  \\ Thus \:  Proved

Similar questions