Math, asked by hluhlute, 9 months ago

PROVE THAT
:
1+secA/secA=sin^2A/1-cosA​

Answers

Answered by Anonymous
24

Given:

\\

\dfrac{1+\sec a}{\sec a} = \dfrac{\sin^2 a}{1-\cos a}

\\\\

Solution:

\\

First we will solve LHS.

LHS

\\

\dfrac{1+\sec a}{\sec a}

\dfrac{1}{\sec a}+\dfrac{\sec a}{\sec a}

\\

We know that,

\dfrac{1}{\sec a}=\cos a

\\

\cos a +1

\\\\

Now, we will solve RHS.

RHS

\\

\dfrac{\sin^2a}{1-\cos a}

\\

We know that,

\sin^2a=1-\cos^2a

\\

\dfrac{1-\cos^2a}{1-\cos a}

\\

a^2-b^2 = (a-b)(a+b)

\\

\dfrac{\cancel{(1-\cos a)}(1+\cos a)}{\cancel{(1-\cos a)}}

(\cos a+1)

\\\\

LHS = RHS

Hence Proved

\\\\

Other Trigonometric

Identities

\\\\\sf1)\:{\sin}^{2}\theta+{\cos}^{2}\theta=1\\ \sf 2) \: {\sec}^{2} \theta - {\tan}^{2} \theta = 1\\ \sf 3) \: {\csc}^{2} \theta - {\cot}^{2} \theta = 1\\\\

Trigonometric Ratios:

\\\\ \tt 1) \: \sin\theta = \frac{1}{ \csc \theta} \\ \tt 2) \: \cos \: \theta \: \: = \: \frac{1}{\sec\theta} \\ \tt 3) \: \tan \: \theta \: = \: \frac{1}{\cot \: \theta} \\ \tt 4) \: \cot \: \theta \: = \: \frac{1}{\tan \: \theta} \\ \tt 5) \: \sec \: \theta \: = \: \frac{1}{\cos \: \theta} \\ \tt 6) \:\csc\:\theta= \frac{1}{\sin \: \theta}\\\\

Similar questions