Math, asked by Anonymous, 5 months ago

Prove that 1/(secA-TanA) - 1/CosA = 1/CosA - 1/(SecA+TanA). ​

Answers

Answered by Anonymous
18

\huge\color{red}{\underline{\underline {Question}}}

Prove that :-

 \frac{1}{secA - tanA}  -  \frac{1}{cosA}  =  \frac{1}{cosA}  -  \frac{1}{secA + tanA}

\huge\color{red}{\underline{\underline {Answer}}}

Given, \\ \\  \frac{1}{secA - tanA}  -  \frac{1}{cosA}  \:  =  \frac{1}{cosA}  -  \frac{1}{secA + tanA}  \\  \\  L.H.S= \frac{1}{secA - tanA}  -  \frac{1}{cosA}  \\ \\ It  \: can \: also \: be \: written \: as \\  \\   \frac{1}{secA - tanA}  +  \frac{1}{secA + tanA}  \\  \\ Similarly , \\  \\ R. H. S = \frac{1}{cosA}  -  \frac{1}{secA + tanA} \\ \\ It \: can \: also \: be \: written \: as \\  \\  \frac{1}{cosA}  +  \frac{1}{cosA}  =  \frac{2}{cosA}  \\  \\ Now \: taking \: L.H.S= \:  \frac{1}{secA - tanA}  +  \frac{1}{secA + tanA} \\  \\  =  >  \frac{secA  + tanA + secA - tanA}{(secA - tanA)(secA + tanA)}  \\  \\  = >   \frac{2}{cosA}  = R. H. S

\mathtt{\bf{\large{\underline {\red{\: \: \:Hence,\: proved.}}}}}

Answered by MissLuxuRiant
3

\huge{\underline{\boxed{\sf{Question}}}}

Prove that :-

\sf\large\frac{1}{secA - tanA} - \frac{1}{cosA} = \frac{1}{cosA} - \frac{1}{secA + tanA}

⠀⠀⠀⠀

\huge{\underline{\boxed{\sf{Answer:}}}}

\begin{gathered}\Given, \\ \\ \frac{1}{secA - tanA} - \frac{1}{cosA} \: = \frac{1}{cosA} - \frac{1}{secA + tanA} \\ \\ L.H.S= \frac{1}{secA - tanA} - \frac{1}{cosA} \\ \\ It \: can \: also \: be \: written \: as \\ \\ \frac{1}{secA - tanA} + \frac{1}{secA + tanA} \\ \\ Similarly , \\ \\ R. H. S = \frac{1}{cosA} - \frac{1}{secA + tanA} \\ \\ It \: can \: also \: be \: written \: as \\ \\ \frac{1}{cosA} + \frac{1}{cosA} = \frac{2}{cosA} \\ \\ Now \: taking \: L.H.S= \: \frac{1}{secA - tanA} + \frac{1}{secA + tanA} \\ \\ = > \frac{secA + tanA + secA - tanA}{(secA - tanA)(secA + tanA)} \\ \\ = > \frac{2}{cosA} = R. H. S \end{gathered}

\mathsf{\sf{\large{\underline {\green{Hence,\: proved.}}}}}

Similar questions