Math, asked by sthepen, 1 year ago

prove that : 1/ secA+tanA - 1/cosA = 1/cosA - 1/secA - tanA .

Answers

Answered by ishaharit
1

Answer:

Step-by-step explanation:

LHS:-  [ 1/secA + tanA ] - 1/cosA

=[ 1 (secA-tanA) / secA+tanA (secA-tanA) ]  - secA

= [ secA - tanA / sec2A - tan2A ] -secA

=secA - tanA - secA

= -  tanA

RHS:-  1/cosA - [ 1/secA - tanA ]

= secA - [1 (secA + tanA) / secA - tanA (secA + tanA) ]

= secA - (secA + tanA / sec2A - tan2A ]

= secA - ( secA + tanA )

= secA - secA - tanA

=  - tanA

SO, LHS=RHS. Hence, proved.

Hope it helps.................

Answered by TRISHNADEVI
4

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \underline{ \text{ \pink{ \: To \:  Prove :- \: }}} \\  \\     \boxed{\bold{\frac{1}{secA  + tanA}   -  \frac{1}{cosA}  =   \frac{1}{cosA}  -  \frac{1}{secA - tanA}}}

 \tt{ \red{L.H.S.  =  \frac{1}{secA+tanA}  -  \frac{1}{cosA}} } \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{ \blue{=  \frac{1 \times (secA - tanA)}{(secA+tanA)(secA - tanA)}  -  \frac{1}{cosA}}}  \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{ \pink{ =  \frac{secA - tanA}{sec {}^{2} A - tan {}^{2} A}  -  \frac{1}{cosA}  }}\\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{  \green{=  \frac{secA - tanA}{1}    -  \frac{1}{cosA} }}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{=  secA - tanA -  \frac{1}{cosA} } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{ \purple{= secA - tanA - secA} } \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{ \red{ = secA - (tanA + secA ) }}\\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{ \purple{=  secA - (secA  +  tanA)}}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{= secA - \{ \frac{(secA  +  tanA)(secA - tanA)}{secA - tanA} \}}\\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{ \green{= secA - (\frac{sec {}^{2} A - tan {}^{2} A}{secA - tanA} ) }}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{ \pink{=  secA  -  \frac{1}{secA - tanA}} } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{ \blue{=  \frac{1}{cosA}  -  \frac{1}{secA - tanA} }}   \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{ \red{=R.H.S. }}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underline{ \sf{ \: Hence  \:  \: proved. \: }}

 \star \:  \:  \:  \underline{ \text{  \pink{ FORMULA   \: USED} :- }} \\  \\  \bold{1. \: (secA  +  tanA)(secA - tanA) = sec {}^{2} A - tan {}^{2} A} \\  \\  \bold{2. \: sec {}^{2} A - tan {}^{2} A = 1} \\  \\   \bold{3. \: \frac{1}{cosA}  = secA } \\  \\

Similar questions