Math, asked by Rushikesh7374, 10 months ago

prove that 1/secA-tanA -1/cosA=tanA​

Answers

Answered by mahasri75
0

Given LHS = \frac{1}{secA-tanA}

On rationalizing we get,

\frac{1}{secA-tanA} * \frac{secA+tanA}{secA+tanA}

\frac{secA+tanA}{(secA-tanA)(secA+tanA)}

\frac{secA+tanA}{sec^2A-tan^2A}

\frac{secA+tanA}{1}

secA+tanA.

LHS = RHS.

Hope this helps!.Mark me as a brainalist

Answered by sandy1816
2

 \frac{1}{secA - tanA}  -  \frac{1}{cosA}  \\  \\  =  \frac{1}{secA - tanA}  \times  \frac{secA + tanA}{secA + tanA}  - secA \\  \\  =  \frac{secA + tanA}{ {sec}^{2} A -  {tan}^{2}A }  - secA \\  \\  = secA + tanA- secA \\ \\ =tanA

.

Similar questions