prove that 1/secA-tanA -1/cosA=tanA
Answers
Answered by
0
Given LHS = \frac{1}{secA-tanA}
On rationalizing we get,
\frac{1}{secA-tanA} * \frac{secA+tanA}{secA+tanA}
\frac{secA+tanA}{(secA-tanA)(secA+tanA)}
\frac{secA+tanA}{sec^2A-tan^2A}
\frac{secA+tanA}{1}
secA+tanA.
LHS = RHS.
Hope this helps!.Mark me as a brainalist
Answered by
2
.
Similar questions