prove that 1/secA-tanA -1/cosA=tanA
Answers
Answered by
2
Step-by-step explanation:
Given LHS = 
On rationalizing we get,




secA+tanA.
LHS = RHS.
Answered by
0
Step-by-step explanation:
(secA+tanA)
1
−
cosA
1
=
cosA
1
−
(secA−tanA)
1
∴
(secA+tanA)
1
−
cosA
1
−
cosA
1
+
(secA−tanA)
1
=0
LHS=
sec
2
A−tan
2
A
secA−tanA+secA+tanA
−
cosA
2
=2secA−
cosA
2
=
cosA
2
−
cosA
2
=0
=RHS
Similar questions