Math, asked by khushi918861, 9 months ago

prove that 1+seca-tana/1+seca+tana=1-sina/cosa​

Answers

Answered by pulakmath007
9

\huge\boxed{\underline{\underline{\green{Solution}}}} </p><p>

 \displaystyle \:  \frac{ (1+sec  A  - tan A   \: )}{( 1+sec A +tan A \: )}

= \displaystyle \:  \frac{ (sec  A  - tan A  + 1 \: )}{(  sec A +tan A +  1\: )}

=  \displaystyle \: \frac{ (sec A  -  tan A +  sec²A-  tan²A}{ (  secA +tan A +  1\: )}

=   \: \frac{[(sec A  -  tan A)  +  (sec A+tan A) (sec A - tan A)}{ (  sec A +tan A +  1\: )}

=  \displaystyle \: \frac{(secA  -  tan A)(  sec A +tan A +  1\: ) }{( sec A +tan A +  1\: )}

  \displaystyle \:= (sec A   -  tan A\: )

  \displaystyle \: =  \frac{( 1  -  sin A ) }{cos A}

Answered by abhinav3161
0

Answer:

1- SINA / COS A IS THE CORRECT ANSWER..

Step-by-step explanation:

HAVE A NICE DAY.... THANKS DEAR....

Similar questions