Math, asked by nasimfahad06, 4 months ago

Prove that:
1 + secA - tanA / 1 + secA + tanA = 1- sinA / cosA​

Answers

Answered by EuphoricBunny
14

Please refresh to the attachment for the answer of your question

Attachments:
Answered by Anonymous
15

TO PROVE :-

 \\  \sf \:  \dfrac{1 + secA - tanA}{1 + secA + tanA}  =  \dfrac{1 - sinA}{cosA}   \\  \\

IDENTITY USED :-

 \\ \sf \: 1) \:  {sec}^{2}A  -  {tan}^{2}A  = 1 \\  \\  \sf \: 2) \: secA =  \dfrac{1}{cosA}  \\  \\  \sf \: 3) \: tanA =  \dfrac{sinA}{cosA}  \\  \\  \sf \: 4) \:  {x}^{2}  -  {y}^{2}  = (x + y)(x - y) \\  \\

SOLUTION :-

 \\  \\  \sf \: L.H.S =  \dfrac{1 + secA  - tanA}{1 + secA + tanA}  \\  \\

We know , sec²A - tan²A = 1

Substituting [ 1 = sec²A - tan²A ] in numerator ,

 \\  \\  \implies \sf \:  \dfrac{( {sec}^{2}A -  {tan}^{2}A ) + secA - tanA }{1 +secA  + tanA}  \\  \\

We know , x² - y² = (x+y)(x-y)

Here ,

  • x = secA
  • y = tanA

 \\  \\  \implies \sf \:  \dfrac{(secA + tanA)(secA - tanA) + secA - tanA}{1 + secA + tanA}  \\  \\

Now , we will take [secA-tanA] common in numerator.

 \\  \\  \implies \sf \:  \dfrac{(secA - tanA) \cancel{ \{secA + tanA + 1 \}}}{ \cancel{1 + secA + tanA} } \\  \\  \\  \implies \sf \:  secA - tanA \\  \\

We know ,

  • secA = 1/cosA
  • tanA = sinA/cosA

Substituting the values , we get..

 \\  \\  \implies \sf \:  \dfrac{1}{cosA}  -  \dfrac{sinA}{cosA}  \\  \\  \\  \implies \sf \:  \dfrac{1 - sinA}{cosA}  = R.H.S \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (proved) \\  \\

Hence ,

 \\   \underline{   \underline{\boxed{ \sf \: \dfrac{1 +sec   -tan }{1 + sec +tan }   =  \dfrac{1 - sin}{cos} }}} \\  \\

MORE IDENTITIES :-

  • sin²A + cos²A = 1

  • 1 + cot²A = cosec²A

  • sinA = 1/cosecA

  • tanA = 1/cotA

  • cotA = cotA/sinA
Similar questions