Math, asked by kanmaiko1993, 2 months ago

prove that 1/secA-tanA - 1cosA= 1secA- 1/secA+ tan A​

Answers

Answered by konthamsudharshan2
0

Answer:

Hence, Proved.

Step-by-step explanation:

Consider 1/secA-tanA - 1/cosA

Multiplying by secA + tanA in the numerator and denominator of

first term,

we get secA + tanA/(secA +tanA)(secA - tanA) - 1/cosA

= secA + tanA - secA (Since sec²A - tan²A = 1)

= tanA

Adding and subtracting secA , we get

secA + tanA - secA

= 1/cosA - (secA - tanA)

Now multiplying and dividing (secA - tanA) by (secA + tanA), we

get 1/cosA - (sec²A - tan²A)/(secA + tanA)

= 1/ cosA - 1/secA + tanA

= R.H.S

Hence, Proved.

Similar questions